Building an Integrated Biodefense Network: BRC and RCE Collaboration Opportunities

Rick Stevens
The University of Chicago
Argonne National Laboratory

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Center Relationships

Observations

- RCEs are relatively large centers
 - Up to about \$10M year per Center
 - Dozens of investigators in each over a geographic area
 - Really collections of individual projects and cores
 - Critical mass by assembling regional investigators
 - Therapeutics and basic science oriented
- Informatics is a small part of their activities
 - Some RCEs do not have an informatics core
 - Many of the individual labs in the RCES do not have adequate bioinformatics support

Challenges of Coupling to RCEs

- There is a need to identify those projects in the RCEs that overlap with the assigned organisms in the BRCs
 - NIH can probably help here in collecting up to date information
 - Typical RCE like GLRCE will touch several BRCs
- The culture and informatics "competence" varies considerably across projects with the RCE
 - Some groups are interested in leveraging informatics but have only fractional effort to contribute to interaction

Challenges of Coupling to RCEs

- The RCE labs have need for several types of support
 - Bioinformatics in support of their research in the small (daily, weekly help)
 - Strategic input to planning and priority setting
 - Technology transfer to enable them to be more effective at doing what they do
- The BRC x RCE interface is human intensive
 - Need for packaging BRC capabilities
 - Need for targeted interactions
 - Need for tutorials and training
 - Need for systematic coordination

Packaging BRC Capabilities

- Writing the cookbooks
 - RCEs (or more specifically the post-docs in the project labs of the RCEs) need access to well described "protocols" for common bioinformatics tasks
 - Think FAQ with interactive step by step help to get from the question to the results via the tools
- Training (often in situ training) is often the rate limiting step
 - Not all labs appreciate what bioinformatics can do
 - Sometimes the post-docs or younger scientists are simply overwhelmed

Some Things We Could Try

- Unified Directory of Who is Doing What
 - Organized by Organism, Tools, Databases, Methods, FAQ and "protocol"
- Registry <sub, pub> model
 - We register what we can do
 - They register what they need
 - We can have humans in the loop to help broker
- Problem/Solution Marketplace
 - It is easy for labs to import successful methods/techniques
 - Need to create a forum (ebay) like space for exchange of requirements and capabilities

Our Own Experience

- The labs that "get it" are asking for more
 - "tell us what to do"
 - Target selection, experiments to test predictions etc
 - They also realize the limited resources and are less interested in sharing if that means getting less support
- Training is a major bottleneck
 - Students in the centers need more bioinformatics training
 - They know it and want to learn
- If NIH requires it they will do it
- Collaboration with BRCs while good may be viewed as a mandate rather than an opportunity

RCE Emergency Response Plans

- Provide scientific support for first responders, within the context of NIH's research mission; add not duplicate
- Develop linkages to federal agencies, state and local agencies
- Have plans in place to respond
- Make facilities and staff available

(from NIH overview of the RCEs)

Putting the Networking in the Biodefense Network

- I believe the BRCs need to be part of the nations integrated biodefense capability
- This means making the connections to the RCEs prior to the need to respond
- There should be some cross BRC x RCE interactions at annual meetings, etc.
- Some kind of coordination group is probably needed

Supporting Ad Hoc Collaboration

Access Grid and Collaboration Technologies

Access Grid ⇒ Integrating Group to Group Collaboration and Visualization

Taiwan's NCHC's SARS Combat Task Force sarsgrid.nchc.org.tw

- System consists of Access Grid, H.323 VTC, medical information management, emergency dispatch and network monitoring.
- Access Grid nodes installed:
 - Sanchung Hospital
 - Chang Gung Memorial Hospital (CGMH)
 - Taiwan's Center of Disease Control
 - Taipei Municipal Jen-Ai Hospital
 - Operational in 10 medical centers on the island

Summary of Opportunities

- 1. FAQs and Directories
- 2. Set of off the shelf "informatics" protocols
- 3. Registry of needs and capabilities
- 4. BRC Training network
- 5. Standing interactions to facilitate rapid response

